113. Physical Properties and Chemical Constitution. Part XXXII.* Thiophen Compounds.

By G. H. JEFFERY, R. PARKER, and A. I. VOGEL.

Pure samples of thiophen, 2-n-alkylthiophens (methyl to n-heptyl), n-alkyl 2-thenoates (methyl to n-heptyl), n-alkyl 2-thienyl ketones (methyl to n-hexyl), and a number of miscellaneous sulphur compounds have been prepared and their physical properties (refractive indices at 20° and densities and surface tensions over a range of temperature) determined: the ultraviolet and infrared spectra were measured in detail for a number of representative compounds. The parachors, molecular refractions, and molecular refraction coefficients for the 2-thienyl group have been evaluated from the new experimental data.

THE present investigation was undertaken to secure trustworthy data on the physical properties of pure n-alkylthiophens, n-alkyl 2-thenoates, n-alkyl 2-thienyl ketones, and 2-halogenothiophens, and to evaluate the refractions, molecular refraction coefficients, and parachors of the thienyl group and their dependence upon different substituents in the 2-position. The constants for the thienyl group in the various series were calculated in the usual manner (cf. Part XXVIII ¹) and are summarised in Table 1.

Table 1.	Mean	constants	for	the	2-thienyl	group.
----------	------	-----------	-----	-----	-----------	--------

Compounds	P	$[R]_{C}$	$[R]_{\mathbf{D}}$	$[R]_{\mathbf{F}}$	$[R]_{G'}$	$Mn_{\rm D}^{20}$
Thiophen	169.1	22.56	22.69	23.27	23.58	124.4
2-n-Âlkylthiophens	167.5	$22 \cdot 86$	23.00	$23 \cdot 56$	24.01	124.5
s†	0.35	0.02	0.02	0.11	0.03	0.27
n-Alkyl 2-thenoates	$173 \cdot 8$	$23 \cdot 83$	24.08	24.78	25.37	127.6
s	0.05	0.02	0.01	0.02	0.02	0.28
n-Alkyl 2-thienyl ketones	$172 \cdot 1$	$23 \cdot 88$	23.99	$24 \cdot 83$	25.62	129.8
s	0.21	0.01	0.01	0.02	0.01	0.28
2-Chlorothiophen	165.6	$22 \cdot 62$	$22 \cdot 80$	$23 \cdot 37$	$23 \cdot 67$	126.7
2-Bromothiophen	165.8	$22 \cdot 53$	22.71	$23 \cdot 20$	$23 \cdot 51$	$134 \cdot 1$
2-Iodothiophen	167.1	$22 \cdot 42$	22.63	$23 \cdot 15$	$23 \cdot 27$	144.7
2-Cyanothiophen	176.5	$23 \cdot 80$	24.05	24.70	25.27	128.0

 $\dagger s =$ Standard deviation.

The variation of the constants for the 2-thienyl group compared with the values deduced from thiophen is very marked, and it is hoped to discuss this in a future communication.

The mean values for the CH_2 increments in the three series of compounds are in good agreement with those previously found (cf. Part XXIII²).

EXPERIMENTAL

Physical Measurements.—Details of methods are given in Part XXVIII.¹ Unless otherwise stated, b. p.s are corrected. The compounds were refractionated immediately before the measurements were made; they were examined for impurities by vapour-phase chromatography (a Griffin and George apparatus, Mark II, was used), and by ultraviolet and infrared spectroscopy, but none was found.

Materials.—Thiophen. Commercially pure thiophen (1 l.) (Hopkin & Williams) was dried (MgSO₄) and slowly distilled in a Towers distillation unit filled with 1/16'' Dixon gauze stainless-steel rings and fitted with a variable take-off head; the reflux ratio was 25:1. A middle fraction of constant b. p. and $n_{\rm p}^{20}$ (1.5287) was separated and refractionated in the same apparatus.

n-Alkyl thienyl ketones. The 2-methyl to 2-n-butyl compounds were prepared from pure

* Part XXXI, J., 1960, 4728.

¹ Part XXVIII, J., 1960, 4454.

² Part XXIII, *J.*, 1948, 1842.

798Thiophen84° 1.0644 1.0405 1.0162 31.30 28.75 26.01 187.6 <i>Alkyllhiophens</i> 799 $2.$ Methyl112 1.0193 0.9978 0.9763 0.9460 30.95 28.17 25.51 22.67 22.68 800 $2.$ -n-Propyl $55.5^{\circ}/20$ 0.9921 0.9976 0.9937 0.9079 29.67 27.65 25.62 23.12 303.7 802 $2.$ n-Patyl $64.5/7$ 0.9937 0.9937 0.9079 29.67 27.65 25.62 23.12 303.7 803 $2.$ n-Pentyl $64.5/7$ 0.9939 0.9230 0.9886 29.74 27.94 26.14 23.83 383.52 804 $2.$ n-Heptyl $74.5/8$ 0.9430 0.9264 0.9032 0.8826 29.74 27.94 26.14 23.83 383.52 805 $2.$ n-Heptyl $74.5/8$ 0.9430 0.9264 0.9032 0.8826 29.74 27.94 26.14 23.83 383.52 806 $3.$ -Methyl 115.5 1.0217 1.0007 0.9790 0.9552 32.37 29.88 27.44 24.51 22.96 807 $2.57/7$ 1.2289 1.2081 1.1873 1.1575 39.66 36.58 34.16 31.78 290.4 808Methyl $75.5/7$ 1.2289 1.2081 1.08151 1.0618 34.20 31.23 30.02 28.33 33.64 810<	note										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	а										
7992-Methyl1121-01930-99780-99760-940030-9528-1725-5122-6723-6723-3723-35264-423-8723-3723-3526-4423-8933-578022-n-Butyl64-5/70-95370-93890-92090-988629-7427-9426-1423-8933-578032-n-Pentyl74-5/80-94300-92640-90970-888130-1128-0526-6423-8333-578042-n-Hexyl76-/90-93350-92690-91180-90320-888130-1128-0526-6423-8333-578052-n-Hexyl76-/90-93350-92690-91180-90320-882129-9528-2526-65723-89422-678063-Methyl115-51-02171-00070-97900-955232-3729-8827-4424-51229-678072,5-Dimethyl1350-98480-96480-94410-917130-5728-1125-2423-45266-57808Methyl75-5/71-22891-20811-18731-157539-6636-5834-1631-78290-67809Ethyl97/141-16251-10311-08511-061834-20 <t< th=""><th>7</th></t<>	7										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b c										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	f										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5										
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	g										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Alkyl 2-thenoates										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i										
810 $n-Fropyl88:5/91.12151.10131.08511.061834:2031:2330:0228:3030:87811n-Butyl83/11.08721.06911.05121.028233:1130:9128:73—407:4812n-Pentyl101\cdot5/41.07001.05461.03751.017332:6030:7128:3927:01445:4813n-Hexyl125:5/61.02081.00790.982432:5830:0327:63—407:4814n-Heptyl133/31.03151.01530.99900.981031:7130:0828:1826:11522:6Alkyl 2-thienyl ketones815Methyl107/231.17071.15171.13251.109842:7238:8536:6332:93273:4816Ethyl107/231.17071.15171.13251.109842:7238:8536:6332:93273:4817n-Propyl108/181.3121.1301.09841.073339:9636:6934:4431:99310:9816Esopropyl79/11.09551.07611.033337:2934:6933:0432:0034:7819n-Butyl131:5/201.06821.04301.03035:6633:9032:1730:03387:4820$	i										
(3)1 <th <="" colspan="5" th=""><th>i i</th></th>	<th>i i</th>					i i					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
815 Methyl 107/23 1·1707 1·1517 1·1325 1·1098 42·72 38·85 36·63 32·93 273·4 816 Ethyl 108/18 1·1312 1·1130 1·0948 1·0733 39·96 36·69 34·44 31·99 310·91 817 n-Propyl 108/11 1·0955 1·0761 1·0593 1·0383 37·29 34·69 33·04 32·00 348·5 818 Isopropyl 79/1 1·0880 1·0719 1·0530 1·0309 37·01 35·29 33·41 31·13 351·1 819 n-Butyl 131·5/20 1·0682 1·0490 1·0311 1·0108 35·66 33·90 32·17 30·03 387·4 820 n-Pentyl 107/3 1·0458 1·0292 1·0130 0·9945 34·17 32·84 31·24 28·81 463·4 821 n-Hexyl 110·5/4 1·0313 1·0151 1·0094 0·9891 34·17 32·84 31·24 28·81 463·4											
610 Edityi105/18171312171301703121703517033357503575035747317573170 817 n-Propyi108/1110955107611059310383372934.6933.0432.00348.7 818 Isopropyi79/11088010719105301030937.0135.2933.4131.13351.1 819 n-Butyi131.5/201068210490103111010835.6633.9032.1730.03387.1 820 n-Pentyi107/31.04581.02921.01300.994534.7033.2431.3629.09424.1 821 n-Hexyi110.5/41.03131.01511.00940.989134.1732.8431.2428.81463.4Halogevothiothews	j b										
818Isopropyl79/1 1.0880 1.0719 1.0530 1.0309 37.01 35.29 33.41 31.13 351.13 819n-Butyl $131.5/20$ 1.0682 1.0490 1.0311 1.0108 35.66 33.90 32.17 30.03 387.1820 820n-Pentyl $107/3$ 1.0458 1.0292 1.0130 0.9945 34.70 33.24 31.36 29.09 424.1824 821n-Hexyl $110.5/4$ 1.0313 1.0151 1.0094 0.9891 34.17 32.84 31.24 28.81 463.1624 Halogevothiothews	k										
819 n-Butyl 131.5/20 1.0682 1.0490 1.0311 1.0108 35.66 33.90 32.17 30.03 387- 820 n-Pentyl 107/3 1.0458 1.0292 1.0130 0.9945 34.70 33.24 31.36 29.09 424- 821 n-Hexyl 110.5/4 1.0313 1.0151 1.0094 0.9891 34.17 32.84 31.24 28.81 463-4 Halogevothiothews	k										
820 n-Pentyl 101/5 10438 10292 10130 0.9945 5470 5524 5130 2909 424 821 n-Hexyl 110.5/4 1.0313 1.0151 1.0094 0.9891 34.17 32.84 31.24 28.81 463.1 Halogevothiothews	k b										
Halogenothiotheus	ñ										
114066000000000000000											
822 2-Chloro- 121 1.2862 1.2618 1.2347 1.2064 34.03 31.72 29.37 27.01 223.	l										
823 2-Bromo- 1 52 1 .7071 1 .6781 1 .6632 1 .6121 3 7.37 3 5.36 3 3.24 3 0.49 2 36.	m										
825 2.5-Dichloro- $65 \cdot 5/23$ 1.4422 1.4154 1.3886 1.3541 37.77 35.75 34.28 29.89 263.	0										
826 2,5-Dibromo- 68/2 2.1439 2.1110 2.0741 2.0246 43.50 42.23 39.21 36.46 290	1										
2-Thienylcarbinols											
827 Methyl $82 \cdot 5/4$ $1 \cdot 1495$ $1 \cdot 1301$ $1 \cdot 1140$ $1 \cdot 0907$ $40 \cdot 40$ $37 \cdot 74$ $33 \cdot 81$ $32 \cdot 43$ $280 \cdot 574$	ļ										
828 Ethyl 75/1.5 1.1079 1.0915 1.0752 1.0503 36.75 34.95 32.91 30.70 317 . 829 n-Propyl 97.5/5 1.0764 1.0599 1.0429 1.0216 36.23 34.21 31.93 29.34 356 .	2										
Miscellaneous sulphur compounds											
830 2-Benzylthio- 95.5/1 1.0999 1.0845 1.0690 — 42.23 39.86 — 403-)										
831 2-Cyanothio- phen 73/10 1.1778 1.1586 1.1380 1.1129 46.42 43.74 41.02 37.55 242.	2										
832 2-Methoxythio- 51/15 1.1335 1.1120 1.0919 1.0689 36.52 34.38 31.46 28.91 248.) r										
833 2-Ethoxythio- phen 62/11 1.0805 1.0603 1.0398 1.0147 33.82 31.54 29.69 27.10 287.	Ĺγ										
834 Thiophen-2- 73.5/11 1.2264 1.2080 1.1888 1.1657 49.25 46.23 44.01 - 242. aldehyde	} s										
835 Tetrahydrothio- 120 0.9989 0.9801 0.9615 0.9398 35.68 33.21 30.86 26.98 216 phen	ŧ t										
836 Tetrahydrothio- phen oxide 90/0.8 1.1725 1.1569 1.1392 1.1177 49.77 46.61 43.84 41.54 235	7										
837 Tetrahydrothio- 117/1 — 1·2549 1·2358 1·2161 — 49·46 43·11 35·65 252 phen dioxide	3 u										
838 Thiacyclohexane 93/82 0.9861 0.9681 0.9488 0.9255 36.06 33.74 $31.17 - 254$	4 v										
839 Imacyclobutane 94 $1.0228 1.0017 0.9817 0.9566 34.60 177$ 840 1,4-Thioxan 147 $1.1171 1.0990 1.0812 1.0587 42.39 40.54 37.49 34.23 238$	0 w 4 x										

TABLE 2.

For footnotes see under Table 3.

dry thiophen and the redistilled acid anhydride in the presence of orthophosphoric acid as catalyst.³ n-Pentyl, n-hexyl, and isopropyl 2-thienyl ketone were obtained from pure dry thiophen and the appropriate redistilled acid chloride in the presence of orthophosphoric acid as catalyst.4

				T	ABLE 3.					
No.	n_{C}^{20}	$n_{\mathrm{D}}{}^{20}$	$n_{\rm F}^{20}$	$n_{\rm G}$, ²⁰	$[R]_{\mathbf{C}}$	$[R]_{\mathrm{D}}$	$[R]_{\mathbf{F}}$	$[R]_{\mathbf{G}}$	$Mn_{\rm D}{}^{20}$	Note
798	1.52385	1.52866	1.54109	1.55196	24.23	$24 \cdot 37$	$24 \cdot 96$	25.28	128.31	a
				Alk	vlthiother	4.5				
799	1.51553	1.52013	1.53196	1.53841	29.07	29.29	29.85	30.15	149.26	Ь
800	1.50805	1.51223	1.52335	1.53240	33.71	33.94	34.56	35.06	169.61	c
801	1.50168	1.50575	1.51606	1.52487	38.38	38.65	39.31	39.85	190.01	d
802	1.49635	1.50021	1.51041	1.51915	43.03	43.32	44.06	44.66	210.43	е
803	1.49484	1.49851	1.50798	1.51638	47.67	47.97	48.74	49.42	$231 \cdot 10$	
804	1.49198	1.49556	1.50466	1.51302	52.29	52.63	$53 \cdot 43$	54.18	$251 \cdot 80$	
805	1.49035	1.49384	1.50265	1.51097	56.90	57.26	58.11	58.93	270.24	
000	1.50780	1.51940	1.53201	1.54213	29.01	29.23	29.77	30.24	149.24	g
007	1.90199	1.91240	1.92911	1.99718	22.81	34.22	34.80	39.30	109.00	n
				Alkyl	2-thenoa	tes				
808	1.53671	1.54229	1.55711	1.56872	36.11	36.42	37.25	37.89	219.31	i
809	1.52001	1.52510	1.53859	1.55096	40.85	41.19	42.07	42.87	238.21	i
810	1.50426	1.51724	1.52990	1.53959	45.57	45.93	46.87	47.58	258.20	2
819	1.50430	1.50881	1.51806	1.59834	54.89	00·08 55.99	51.98 57.10	52·34 56.95	278.01	1
813	1.49980	1.50395	1.51488	1.52403	59.43	59.85	60.93	61.84	209.90	r
814	1.49587	1.49983	1.51022	1.51914	64.08	64.51	65.61	66.61	338.89	
				A15.1 9	+1.:				000 00	
015	1.56019	1.56601	1 59500	Aikyi 2-	nienyi ke	25 10	96.09	96 79	107.00	•
816 816	1.54890	1.55496	1.57089	1.58690	20.41 20.41	30.75	30.03 40.64	30·72 41.69	197.08	J h
817	1.53788	1.54356	1.55884	1.57317	44.05	44.41	40.04	46.46	217.93	к
818	1.53570	1.54134	1.55672	1.57109	44.18	44.56	45.61	46.58	237.70	k
819	1.53016	1.53545	1.54981		48.68	49.09	50.14		258.33	k
820	1.52943	1.52953	1.54302	1.55561	53.33	53.77	54.88	56.03	278.79	k
821	1.52135	1.52617	1.53929	1.54869	57.97	58.44	59.60	60.83	299.58	
				Haloge	nothioph	ens				
822	1.54386	1.54888	1.56172	1.57145	29.10^{-1}	29.32	29.95	30.31	183.66	1
823	1.58142	1.58705	1.60163	1.61181	31.84	$32 \cdot 10$	32.74	33.19	258.75	m
824	1.64550	1.65290	1.67225	1.68149	36.89	37.24	38.11	38.55	$347 \cdot 16$	
825	1.55778	1.56286	1.57657	1.58861	34.20	$34 \cdot 46$	35.15	35.74	$239 \cdot 20$	0
826	$1 \cdot 62222$	1.62863	1.64547	1.66049	39.76	40.08	40.94	41.69	394.05	Þ
				$2 ext{-}Thie$	nylcarbin	ols				
827	1.54327	1.54803	1.56032	1.56976	35.16	35.42	36.08	36.57	198.42	q
828	1.53417	1.53856	1.55017	1.55953	39.89	40.22	40.92	41.50	218.80	\hat{q}
829	1.52764	1.53228	1.54439	1.55390	44.70	45.00	45.86	46.42	$239{\cdot}41$	\overline{q}
			Mi	scellaneous	sulphur a	compound	s			
830	1.58638	1.59125	1.60722	$1 \cdot 62030$	$5\hat{3} \cdot 20$	53.55	54.72	55.67	277.31	
831	1.55870	1.56486	1.58114	1.59593	29.89	30.17	30.87	31.51	170.76	
832	1.52273	1.52738	1.53932	1.54882	30.75	31.00	31.56	32.03	174.47	
833	1.50988	1.51418	1.52518	1.53424	35.47	35.73	36.36	36.88	$194 \cdot 10$	t
834	1.58278	1.59085	1.61313	1.63481	30.55	30.89	31.83	32.73	178.41	s
835	1.50108	1.50430	1.51243	1.52193	26.01	26.16	26.51	26.94	132.61	t
000 034	1.48309	1.92221	1.03028	1.40264	20.90 97.00	$27.10 \\ 97.11$	27.49	27.73	128.50	
001	1.40907	1.40090	1.42111	1.42904	21.00	41.11	21.99	27.01	110.00	u
838	1.50354	1.50698	1.51484	1.52272	30.66	30.83	31.24	31.64	153.97	v
010 010	1.50499	1.50749	1.51559	1.59991	21·51 97.69	21.64	21.96	22·25	111.86	w
OTU	1.00497	1.90149	1.91999	1 04441	41.04	41.11	20.1 4	40.44	107.04	х

n-Alkylthiophens. 2-Methylthiophen was prepared from sodium lævulate and phosphorus trisulphide.⁵ 2-Ethyl- and 2-n-propyl-thiophen were obtained from 2-acetyl- and 2-propionylthiophen by Huang-Minlon's modification of the Wolff-Kishner reduction.⁶ n-Butyl-,

³ See Kosak and Hartough, Org. Synth., Coll. Vol. III, p. 14.
⁴ Hartough and Kosak, J. Amer. Chem. Soc., 1947, 69, 3093.
⁵ Hartough, "Thiophene and its Derivatives," p. 495, Interscience Publ. Inc., New York, 1952.

⁶ Buu-Hoï, J. Org. Chem., 1950, 15, 957; King and Nord, ibid., 1949, 14, 638.

572

n-pentyl-, n-hexyl-, and n-heptyl-thiophen were prepared by interaction of pure thiophen and the appropriate alkyl bromide in liquid ammonia solution in the presence of sodamide (cf. preparation of n-alkylpyridines, Part XXVIII¹); the products were isolated by fractionation under reduced pressure. 3-Methylthiophen was obtained from redistilled sodium methyl succinate and phosphorus pentasulphide in the presence of a mineral oil; 7 2,5-dimethylthiophen was prepared from acetonylacetone and phosphorus trisulphide.⁸

n-Alkyl 2-thenoates. 2-Thenoic acid was prepared by oxidation of pure 2-acetylthiophen with potassium hypochlorite by an adaptation of the method for conversion of 2-acetylnaphthalene into naphthoic acid,⁹ and was recrystallised from hot water; it had m. p. 130°. The acid was converted into 2-thenoyl chloride with excess of pure thionyl chloride; the excess of the latter was removed by distillation on a water-bath, and the residue treated with the calculated quantity of the pure alcohol (methyl to n-butyl, n-hexyl, and n-heptyl thenoate). n-Pentyl thenoate was obtained by refluxing a mixture of the acid, pure n-pentyl alcohol, and benzene in the presence of Zeo-Karb 225H and was isolated in the usual manner.¹⁰

2-Chlorothiophen. This was prepared from pure thiophen (1 mol.) and redistilled sulphuryl chloride (1 mol.) and isolated by fractionation.¹¹

2-Bromothiophen. This was obtained by treatment of thiophen (1 mol.) in carbon tetrachloride with bromine (0.95 mol.) in carbon tetrachloride at $0-10^{\circ}$ and was isolated by fractionation.12

2-Iodothiophen. Interaction of thiophen with iodine in the presence of mercuric oxide ¹³ yielded, after fractional distillation at low pressure, the pure colourless 2-iodothiophen.

2,5-Dichlorothiophen. This was prepared from thiophen and sulphuryl chloride in the presence of iodine as catalyst.¹²

2,5-Dibromothiophen. A commercial sample (Fluka) was carefully fractionated under reduced pressure through a 4" column filled with Fenske helices.

Thiophen-2-aldehyde. Interaction of thiophen with N-methylformanilide and phosphorus oxychloride ¹⁴ gave a light red oil, b. p. $66-67^{\circ}/4$ mm. This was steam-distilled in the presence of aqueous sodium hydrogen carbonate, a Dean and Stark apparatus being used as receiver for the aldehyde-water mixture: the colourless aldehyde was isolated by ether-extraction,

Footnotes to Table 3.

(a) Fawcett and Rasmussen (J. Amer. Chem. Soc., 1945, **67**, 1705) give $d_2^{20} 1.0644$, $n_D^{20} 1.5287$, P 187.4. (b) Fawcett (*ibid.*, 1946, **68**, 1420) gives $d_2^{40} 1.0194$, $n_D^{20} 1.5203$; Haines (J. Phys. Chem., 1956, **60**, 551) gives $d_2^{40} 1.01965$, $n_D^{20} 1.5203$. (c) von Auwers and Kohlhaas (J. prakt. Chem., 1924, **108**, 322) give $d_2^{12} 0.9908$. (d) Scheibler and Schmidt (Ber., 1921, **54**, 149) give $n_D^{20} 1.5048$. (e) Pines et al. (J. Amer. Chem. Soc., 1951, **73**, 5173) give $n_D^{20} 1.5004$. (f) Campaigne and Diedrich (*ibid.*, 1948, **70**, 391) give $d_2^{20} 0.946$, $n_D^{20} 1.4970$. (g) Fawcett (*loc. cit.*) gives $d_2^{00} 1.0216$, $n_D^{20} 1.5204$; Haines (*loc. cit.*) gives $d_2^{20} 1.02183$, $n_D^{20} 1.5204$, P 228.2. (h) Hartough (J. Amer. Chem. Soc., 1951, **73**, 4035) gives $n_D^{20} 1.528$. (i) Weinstein (*ibid.*, 1955, **77**, 6709) gives methyl, $d_2^{20} 1.2909$, $n_D^{20} 1.5420$; ethyl, $d_2^{30} 1.0573$, $n_D^{20} 1.5248$; n-propyl, $d_2^{20} 1.1123$, $n_D^{20} 1.5170$; n-butyl, $d_2^{20} 1.0859$, $n_D^{20} 1.5122$; n-pentyl, $d_2^{40} 1.0673$, $n_D^{20} 1.5071$. (j) Johnson (*ibid.*, 1947, **69**, 150) gives $d_2^{20} 1.1709$, $n_D^{80} 1.5667$, γ^{30} 44.5 (k) Spurlock (*ibid.*, 1953, **75**, 1115) gives ethyl, $d^{20} 1.1084$, $n_D^{20} 1.5357$; n-pentyl, $d^{20} 1.0494$, $n_D^{20} 1.5487$. (m) Keswani and Freiser (*ibid.*, 1949, **71**, 218) give $d_2^{30} 1.6929$, $n_D^{50} 1.5351$; (n) Heswani and Freiser (*loc. cil.*) give $d_3^{40} 2.0493$. (c) Coornadt et al. (*loc. cil.*) give $d_2^{40} 1.2143$, $n_D^{20} 1.5261$; ethoxy, d_2^{27} 1.5318; butanol, $n_D^{25} 1.5220$. (r) Sicé ¹⁶ gives methoxy, $d_2^{25} 1.1200$, $n_D^{25} 1.5261$; ethoxy, d_2^{27} 1.075, $n_D^{27} 1.5116$. (s) Keswani and Freiser (*loc. cil.*) give $d_3^{40} 1.2143$, $n_D^{30} 1.5838$. (l) Haines (*loc. cil.*) gives $d_4^{20} 0.9986$, $n_D^{30} 1.5848$. (u) Solid, m. p. $24 \cdot 8^{5}$; values at 20° (extrapolated), $n_D^{30} 1.5848$; $n_D^{35} 1.48013$. (v) Haines (*loc* (a) Fawcett and Rasmussen (J. Amer. Chem. Soc., 1945, 67, 1705) give d_{40}^{20} 1.0644, $n_{\rm D}^{20}$ 1.5287,

7 Feldkamp and Tullar, Org. Synth., 1954, 34, 73.

Buu-Hoï and Nguyen-Hoan, Rec. Trav. chim., 1948, 67, 309; cf. ref. 5. (a) Newman and Holmes, Org. Synth., Coll. Vol. II, p. 428, John Wiley & Sons, New York, 1943;

(b) Hartough and Conley, J. Amer. Chem. Soc., 1947, 69, 3096.
 ¹⁰ Sussman, Ind. Eng. Chem., 1946, 38, 1228; Vogel, "Practical Organic Chemistry," 3rd edn., p. 387, Longmans, Green & Co., London.

¹¹ Campaigne and Le Suer, J. Amer. Chem. Soc., 1948, 70, 415.

¹² Cf. Hartough, ref. 5, p. 498.

¹³ Minnis, ref. 9a, p. 44.

¹⁴ King and Nord, J. Org. Chem., 1948, 13, 635; Weston and Michaels, J. Amer. Chem. Soc., 1950, 72, 1422.

and the ethereal extract dried, and, after removal of the ether, distilled in nitrogen under reduced pressure through a 6" Fenske column.

2-Cyanothiophen. Pure thiophen-2-aldehyde was converted by hydroxylammonium chloride into the oxime, m. p. 128°, and the latter warmed gently with a mixture of acetic anhydride and anhydrous sodium acetate.¹⁵ The nitrile, isolated as usual, was distilled first at normal pressure (b. p. 192-193°) and then under reduced pressure.

2-Methoxythiophen. This was prepared by refluxing 2-iodothiophen and methanolic sodium methoxide for 30 hr. in the presence of powdered cupric oxide; it boiled ¹⁶ constantly at 75-76°/50 mm.

2-Ethoxythiophen. This was prepared similarly to methoxythiophen.

2-Thienyl-carbinols. 2-Thienyl-ethanol, -propan-1-ol, and -butan-1-ol were prepared by the interaction of 2-thienylmagnesium bromide and the appropriate aldehyde.¹⁷ All were isolated by fractionation at 2-3 mm.

2-Benzylthiophen. Anhydrous zinc chloride (50 g.) was added during 1 hr. to a boiling mixture of thiophen (50 g.) and benzyl alcohol (50 g.); the 2-benzylthiophen, b. p. 115-116°/10 mm. (24 g.), was isolated by steam-distillation and ether-extraction.¹⁸

Tetrahydrothiophen. This was obtained from redistilled 1,4-dichlorobutane and sodium sulphide in dimethylformamide.¹⁹

Tetrahydrothiophen oxide and dioxide. Commercial samples (Robinson Bros., West Bromwich) were dried and fractionated under reduced pressure through a 6" Fenske column.

Thiacyclohexane. This was prepared by adding 1,5-dibromopentane to a boiling sodium sulphide solution, and refluxing the whole for 4 hr., with final steam-distillation.²⁰

Thiacyclobutane. This was obtained from alcoholic sodium sulphide and trimethylene dibromide.21

1,4-Thioxan. A commercial sample (Robinson Bros., West Bromwich), dried and redistilled, had b. p. 146.0°/759 mm.

Tables 2 and 3 summarise the physical properties of all the pure compounds investigated; the numbering of compounds in Clarendon type follows from Part XXXI.²² Table 2 contains the b. p. (at 760 mm., unless otherwise stated), rounded values of the density and surface tension at various temperatures, and the mean parachor, whilst Table 3 gives the refractive indices, molar refractivities, and the molar refraction coefficients.

Ultraviolet Spectra.--Measurements were made in matched 1 cm. silica cells on a Unicam spectrophotometer S.P. 500. n-Hexane "free from aromatic hydrocarbons" was purified by percolation through a 40" column of silica gel (14-20 mesh). Burroughs's absolute ethyl alcohol was used directly. Solutions were prepared by dissolving 10-20 mg. of the sample, accurately weighed, in 10.0 ml. of the purified solvent: 1.00 ml. of this solution was then diluted to 10 or 25 ml. in a graduated flask.

TABLE 4. Ultraviolet absorption data.

2-n-Alkylthiophens (in n-hexane)				Halogenothiophens (in alcohol)					
Compound	10 ⁶ C	λ_{\max}	$E_{\rm max.}$		Compound	$10^{6}C$	λ_{\max}	$E_{\text{max.}}$	
(Thiophen)	109	231	8000		2-Chloro	80	236	7900	
2-Ethyl	118	234	8000		2-Bromo	82	236	8350	
2-n-Pentyl	118	234	8000		2,5-Dichloro	77	252	10,050	
2-n-Hexyl	57	234	8000		2,5-Dibromo	100	252	10,150	
3-Methyl	102	235	6050						
2-n-Alkvl thenoates (in n-hexane)					Miscellaneous sulphur compounds (in alcohol)				
Compound	$10^6 C \lambda_{\text{max.}}$	$E_{\rm max.}$ $\lambda_{\rm max.}$	$E_{\rm max}, \lambda_{\rm max},$	$E_{\rm max.}$	2-Benzylthiophen	87	235	10,000	
Ethvl	59 244	15.100 250	$15.100 \ 262$	12,150	2-Cyanothiophen	90	242	18,900	
n-Propyl	91 244	15.100 250	$15.100 \ 262$	12,150	Thiophen-2-aldehyde	85	261	14,000	
n-Heptvl	99 245	15.100 250	$15.150 \ 262$	12,150	Tetrahydrothiophen	83	210	1000	
1.2			•		Thiacyclohexane	82	210	1000	

¹⁵ Putoknin and Egorova, J. Gen. Chem. (U.S.S.R.), 1948, **18**, 1866; Chem. Abs., 1949, **43**, 3816.

¹⁶ Sicé, J. Amer. Chem. Soc., 1953, **75**, 3697.
¹⁷ Van Zyl, Langenberg, Tan, and Schut, J. Amer. Chem. Soc., 1956, **78**, 1955.
¹⁸ Steinkopf, Annalen, 1939, **541**, 257.

¹⁹ Lawson, Easlay, and Wagner, Org. Synth., 1956, 36, 89.

²⁰ Haines, J. Phys. Chem., 1956, 60, 549.

²¹ Bennett and Hock, J., 1927, 2496.
 ²² Part XXXI, J., 1960, 4728.

Some typical results are collected in Table 4. Concentrations C are expressed in moles per l.; λ_{\max} is given in m μ . Data for a few thiophen compounds in iso-octane have been published ²³ and are in excellent agreement with ours.

Infrared Spectra.—The infrared absorption spectra (capillary film) were kindly measured by Mr. R. F. Branch, B.Sc., of the Ministry of Supply, Woolwich, using a Perkin–Elmer doublebeam instrument with a rock-salt prism. Typical spectra, including those for which the ultraviolet spectra are recorded above, are contained in ref. 24. The infrared spectra published for some alkyl- and halogeno-thiophens²⁵ agreed well with our own.

The authors thank Imperial Chemical Industries Limited for a grant.

Department of Chemistry, Woolwich Polytechnic, London, S.E.18.

[Received, July 22nd, 1960.]

²³ Ref. 5, p. 101.

²⁴ R. S. Parker, Ph.D. Thesis, University of London, 1958.

²⁵ Ref. 5, pp. 109-127.